Rebase shim against latest boringssl code

Numerous conflicts resolved. rebase was against commit 490469f850.

Reviewed-by: Richard Levitte <levitte@openssl.org>
master
Matt Caswell 7 years ago
parent 8c6c5077b2
commit 7b73b7beda

@ -1,7 +1,7 @@
all: ossl_shim
ossl_shim: ../../libssl.a ../../libcrypto.a *.cc
g++ -g -std=c++11 -I. -I../../include *.cc \
g++ -g -std=c++11 -I. -Iinclude -I../../include *.cc \
../../libssl.a ../../libcrypto.a -ldl -lpthread \
-o ossl_shim

@ -17,6 +17,7 @@
#include <errno.h>
#include <string.h>
#include <openssl/bio.h>
#include <openssl/crypto.h>
@ -158,12 +159,12 @@ static const BIO_METHOD *AsyncMethod(void)
} // namespace
ScopedBIO AsyncBioCreate() {
return ScopedBIO(BIO_new(AsyncMethod()));
bssl::UniquePtr<BIO> AsyncBioCreate() {
return bssl::UniquePtr<BIO>(BIO_new(AsyncMethod()));
}
ScopedBIO AsyncBioCreateDatagram() {
ScopedBIO ret(BIO_new(AsyncMethod()));
bssl::UniquePtr<BIO> AsyncBioCreateDatagram() {
bssl::UniquePtr<BIO> ret(BIO_new(AsyncMethod()));
if (!ret) {
return nullptr;
}

@ -15,22 +15,21 @@
#ifndef HEADER_ASYNC_BIO
#define HEADER_ASYNC_BIO
#include <openssl/base.h>
#include <openssl/bio.h>
#include "crypto/scoped_types.h"
// AsyncBioCreate creates a filter BIO for testing asynchronous state
// machines which consume a stream socket. Reads and writes will fail
// and return EAGAIN unless explicitly allowed. Each async BIO has a
// read quota and a write quota. Initially both are zero. As each is
// incremented, bytes are allowed to flow through the BIO.
ScopedBIO AsyncBioCreate();
bssl::UniquePtr<BIO> AsyncBioCreate();
// AsyncBioCreateDatagram creates a filter BIO for testing for
// asynchronous state machines which consume datagram sockets. The read
// and write quota count in packets rather than bytes.
ScopedBIO AsyncBioCreateDatagram();
bssl::UniquePtr<BIO> AsyncBioCreateDatagram();
// AsyncBioAllowRead increments |bio|'s read quota by |count|.
void AsyncBioAllowRead(BIO *bio, size_t count);

@ -1,102 +0,0 @@
/* Copyright (c) 2015, Google Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
#ifndef OPENSSL_HEADER_CRYPTO_TEST_SCOPED_TYPES_H
#define OPENSSL_HEADER_CRYPTO_TEST_SCOPED_TYPES_H
#include <stdint.h>
#include <stdio.h>
#include <memory>
#include <openssl/asn1.h>
#include <openssl/bio.h>
#include <openssl/bn.h>
#include <openssl/crypto.h>
#include <openssl/cmac.h>
#include <openssl/dh.h>
#include <openssl/ecdsa.h>
#include <openssl/ec.h>
#include <openssl/evp.h>
#include <openssl/pkcs12.h>
#include <openssl/rsa.h>
#include <openssl/stack.h>
#include <openssl/x509.h>
template<typename T, void (*func)(T*)>
struct OpenSSLDeleter {
void operator()(T *obj) {
func(obj);
}
};
template<typename StackType, typename T, void (*func)(T*)>
struct OpenSSLStackDeleter {
void operator()(StackType *obj) {
sk_pop_free(reinterpret_cast<_STACK*>(obj),
reinterpret_cast<void (*)(void *)>(func));
}
};
template<typename T>
struct OpenSSLFree {
void operator()(T *buf) {
OPENSSL_free(buf);
}
};
struct FileCloser {
void operator()(FILE *file) {
fclose(file);
}
};
template<typename T, void (*func)(T*)>
using ScopedOpenSSLType = std::unique_ptr<T, OpenSSLDeleter<T, func>>;
template<typename StackType, typename T, void (*func)(T*)>
using ScopedOpenSSLStack =
std::unique_ptr<StackType, OpenSSLStackDeleter<StackType, T, func>>;
using ScopedASN1_TYPE = ScopedOpenSSLType<ASN1_TYPE, ASN1_TYPE_free>;
using ScopedBIO = ScopedOpenSSLType<BIO, BIO_vfree>;
using ScopedBIGNUM = ScopedOpenSSLType<BIGNUM, BN_free>;
using ScopedBN_CTX = ScopedOpenSSLType<BN_CTX, BN_CTX_free>;
using ScopedBN_MONT_CTX = ScopedOpenSSLType<BN_MONT_CTX, BN_MONT_CTX_free>;
using ScopedCMAC_CTX = ScopedOpenSSLType<CMAC_CTX, CMAC_CTX_free>;
using ScopedDH = ScopedOpenSSLType<DH, DH_free>;
using ScopedECDSA_SIG = ScopedOpenSSLType<ECDSA_SIG, ECDSA_SIG_free>;
using ScopedEC_GROUP = ScopedOpenSSLType<EC_GROUP, EC_GROUP_free>;
using ScopedEC_KEY = ScopedOpenSSLType<EC_KEY, EC_KEY_free>;
using ScopedEC_POINT = ScopedOpenSSLType<EC_POINT, EC_POINT_free>;
using ScopedEVP_PKEY = ScopedOpenSSLType<EVP_PKEY, EVP_PKEY_free>;
using ScopedEVP_PKEY_CTX = ScopedOpenSSLType<EVP_PKEY_CTX, EVP_PKEY_CTX_free>;
using ScopedPKCS8_PRIV_KEY_INFO = ScopedOpenSSLType<PKCS8_PRIV_KEY_INFO,
PKCS8_PRIV_KEY_INFO_free>;
using ScopedPKCS12 = ScopedOpenSSLType<PKCS12, PKCS12_free>;
using ScopedRSA = ScopedOpenSSLType<RSA, RSA_free>;
using ScopedX509 = ScopedOpenSSLType<X509, X509_free>;
using ScopedX509_ALGOR = ScopedOpenSSLType<X509_ALGOR, X509_ALGOR_free>;
using ScopedX509_SIG = ScopedOpenSSLType<X509_SIG, X509_SIG_free>;
using ScopedX509_STORE_CTX = ScopedOpenSSLType<X509_STORE_CTX, X509_STORE_CTX_free>;
using ScopedX509Stack = ScopedOpenSSLStack<STACK_OF(X509), X509, X509_free>;
using ScopedOpenSSLBytes = std::unique_ptr<uint8_t, OpenSSLFree<uint8_t>>;
using ScopedOpenSSLString = std::unique_ptr<char, OpenSSLFree<char>>;
using ScopedFILE = std::unique_ptr<FILE, FileCloser>;
#endif // OPENSSL_HEADER_CRYPTO_TEST_SCOPED_TYPES_H

@ -0,0 +1,158 @@
/* ====================================================================
* Copyright (c) 1998-2001 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* openssl-core@openssl.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ====================================================================
*
* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com). */
#ifndef OPENSSL_HEADER_BASE_H
#define OPENSSL_HEADER_BASE_H
/* Needed for BORINGSSL_MAKE_DELETER */
# include <openssl/bio.h>
# include <openssl/evp.h>
# include <openssl/dh.h>
# include <openssl/x509.h>
# include <openssl/ssl.h>
# define OPENSSL_ARRAY_SIZE(array) (sizeof(array) / sizeof((array)[0]))
/* Temporary TLS1.3 defines until OpenSSL supports these */
# define TLS1_3_VERSION 0x0304
# define SSL_OP_NO_TLSv1_3 0
extern "C++" {
#include <memory>
namespace bssl {
namespace internal {
template <typename T>
struct DeleterImpl {};
template <typename T>
struct Deleter {
void operator()(T *ptr) {
// Rather than specialize Deleter for each type, we specialize
// DeleterImpl. This allows bssl::UniquePtr<T> to be used while only
// including base.h as long as the destructor is not emitted. This matches
// std::unique_ptr's behavior on forward-declared types.
//
// DeleterImpl itself is specialized in the corresponding module's header
// and must be included to release an object. If not included, the compiler
// will error that DeleterImpl<T> does not have a method Free.
DeleterImpl<T>::Free(ptr);
}
};
template <typename T, typename CleanupRet, void (*init)(T *),
CleanupRet (*cleanup)(T *)>
class StackAllocated {
public:
StackAllocated() { init(&ctx_); }
~StackAllocated() { cleanup(&ctx_); }
StackAllocated(const StackAllocated<T, CleanupRet, init, cleanup> &) = delete;
T& operator=(const StackAllocated<T, CleanupRet, init, cleanup> &) = delete;
T *get() { return &ctx_; }
const T *get() const { return &ctx_; }
void Reset() {
cleanup(&ctx_);
init(&ctx_);
}
private:
T ctx_;
};
} // namespace internal
#define BORINGSSL_MAKE_DELETER(type, deleter) \
namespace internal { \
template <> \
struct DeleterImpl<type> { \
static void Free(type *ptr) { deleter(ptr); } \
}; \
}
// This makes a unique_ptr to STACK_OF(type) that owns all elements on the
// stack, i.e. it uses sk_pop_free() to clean up.
#define BORINGSSL_MAKE_STACK_DELETER(type, deleter) \
namespace internal { \
template <> \
struct DeleterImpl<STACK_OF(type)> { \
static void Free(STACK_OF(type) *ptr) { \
sk_##type##_pop_free(ptr, deleter); \
} \
}; \
}
// Holds ownership of heap-allocated BoringSSL structures. Sample usage:
// bssl::UniquePtr<BIO> rsa(RSA_new());
// bssl::UniquePtr<BIO> bio(BIO_new(BIO_s_mem()));
template <typename T>
using UniquePtr = std::unique_ptr<T, internal::Deleter<T>>;
BORINGSSL_MAKE_DELETER(BIO, BIO_free)
BORINGSSL_MAKE_DELETER(EVP_PKEY, EVP_PKEY_free)
BORINGSSL_MAKE_DELETER(DH, DH_free)
BORINGSSL_MAKE_DELETER(X509, X509_free)
BORINGSSL_MAKE_DELETER(SSL, SSL_free)
BORINGSSL_MAKE_DELETER(SSL_CTX, SSL_CTX_free)
BORINGSSL_MAKE_DELETER(SSL_SESSION, SSL_SESSION_free)
} // namespace bssl
} /* extern C++ */
#endif /* OPENSSL_HEADER_BASE_H */

@ -28,14 +28,15 @@
#include <unistd.h>
#else
#include <io.h>
#pragma warning(push, 3)
OPENSSL_MSVC_PRAGMA(warning(push, 3))
#include <winsock2.h>
#include <ws2tcpip.h>
#pragma warning(pop)
OPENSSL_MSVC_PRAGMA(warning(pop))
#pragma comment(lib, "Ws2_32.lib")
OPENSSL_MSVC_PRAGMA(comment(lib, "Ws2_32.lib"))
#endif
#include <assert.h>
#include <inttypes.h>
#include <string.h>
@ -49,17 +50,17 @@
#include <openssl/objects.h>
#include <openssl/rand.h>
#include <openssl/ssl.h>
#include <openssl/x509.h>
#include <memory>
#include <string>
#include <vector>
#include "crypto/scoped_types.h"
#include "async_bio.h"
#include "packeted_bio.h"
#include "scoped_types.h"
#include "test_config.h"
namespace bssl {
#if !defined(OPENSSL_SYS_WINDOWS)
static int closesocket(int sock) {
@ -81,31 +82,26 @@ static int Usage(const char *program) {
}
struct TestState {
TestState() {
// MSVC cannot initialize these inline.
memset(&clock, 0, sizeof(clock));
memset(&clock_delta, 0, sizeof(clock_delta));
}
// async_bio is async BIO which pauses reads and writes.
BIO *async_bio = nullptr;
// clock is the current time for the SSL connection.
timeval clock;
// clock_delta is how far the clock advanced in the most recent failed
// |BIO_read|.
timeval clock_delta;
// packeted_bio is the packeted BIO which simulates read timeouts.
BIO *packeted_bio = nullptr;
bssl::UniquePtr<EVP_PKEY> channel_id;
bool cert_ready = false;
ScopedSSL_SESSION session;
ScopedSSL_SESSION pending_session;
bssl::UniquePtr<SSL_SESSION> session;
bssl::UniquePtr<SSL_SESSION> pending_session;
bool early_callback_called = false;
bool handshake_done = false;
// private_key is the underlying private key used when testing custom keys.
ScopedEVP_PKEY private_key;
bssl::UniquePtr<EVP_PKEY> private_key;
std::vector<uint8_t> private_key_result;
// private_key_retries is the number of times an asynchronous private key
// operation has been retried.
unsigned private_key_retries = 0;
bool got_new_session = false;
bssl::UniquePtr<SSL_SESSION> new_session;
bool ticket_decrypt_done = false;
bool alpn_select_done = false;
};
static void TestStateExFree(void *parent, void *ptr, CRYPTO_EX_DATA *ad,
@ -116,11 +112,11 @@ static void TestStateExFree(void *parent, void *ptr, CRYPTO_EX_DATA *ad,
static int g_config_index = 0;
static int g_state_index = 0;
static bool SetConfigPtr(SSL *ssl, const TestConfig *config) {
static bool SetTestConfig(SSL *ssl, const TestConfig *config) {
return SSL_set_ex_data(ssl, g_config_index, (void *)config) == 1;
}
static const TestConfig *GetConfigPtr(const SSL *ssl) {
static const TestConfig *GetTestConfig(const SSL *ssl) {
return (const TestConfig *)SSL_get_ex_data(ssl, g_config_index);
}
@ -137,20 +133,21 @@ static TestState *GetTestState(const SSL *ssl) {
return (TestState *)SSL_get_ex_data(ssl, g_state_index);
}
static ScopedX509 LoadCertificate(const std::string &file) {
ScopedBIO bio(BIO_new(BIO_s_file()));
static bssl::UniquePtr<X509> LoadCertificate(const std::string &file) {
bssl::UniquePtr<BIO> bio(BIO_new(BIO_s_file()));
if (!bio || !BIO_read_filename(bio.get(), file.c_str())) {
return nullptr;
}
return ScopedX509(PEM_read_bio_X509(bio.get(), NULL, NULL, NULL));
return bssl::UniquePtr<X509>(PEM_read_bio_X509(bio.get(), NULL, NULL, NULL));
}
static ScopedEVP_PKEY LoadPrivateKey(const std::string &file) {
ScopedBIO bio(BIO_new(BIO_s_file()));
static bssl::UniquePtr<EVP_PKEY> LoadPrivateKey(const std::string &file) {
bssl::UniquePtr<BIO> bio(BIO_new(BIO_s_file()));
if (!bio || !BIO_read_filename(bio.get(), file.c_str())) {
return nullptr;
}
return ScopedEVP_PKEY(PEM_read_bio_PrivateKey(bio.get(), NULL, NULL, NULL));
return bssl::UniquePtr<EVP_PKEY>(
PEM_read_bio_PrivateKey(bio.get(), NULL, NULL, NULL));
}
template<typename T>
@ -160,15 +157,20 @@ struct Free {
}
};
static bool GetCertificate(SSL *ssl, ScopedX509 *out_x509,
ScopedEVP_PKEY *out_pkey) {
const TestConfig *config = GetConfigPtr(ssl);
static bool GetCertificate(SSL *ssl, bssl::UniquePtr<X509> *out_x509,
bssl::UniquePtr<EVP_PKEY> *out_pkey) {
const TestConfig *config = GetTestConfig(ssl);
if (!config->digest_prefs.empty()) {
fprintf(stderr, "Digest prefs not supported.\n");
return false;
}
if (!config->signing_prefs.empty()) {
fprintf(stderr, "Set signing algorithm prefs not supported\n");
return false;
}
if (!config->key_file.empty()) {
*out_pkey = LoadPrivateKey(config->key_file.c_str());
if (!*out_pkey) {
@ -189,15 +191,15 @@ static bool GetCertificate(SSL *ssl, ScopedX509 *out_x509,
}
static bool InstallCertificate(SSL *ssl) {
ScopedX509 x509;
ScopedEVP_PKEY pkey;
bssl::UniquePtr<X509> x509;
bssl::UniquePtr<EVP_PKEY> pkey;
if (!GetCertificate(ssl, &x509, &pkey)) {
return false;
}
if (pkey) {
TestState *test_state = GetTestState(ssl);
const TestConfig *config = GetConfigPtr(ssl);
const TestConfig *config = GetTestConfig(ssl);
if (!SSL_use_PrivateKey(ssl, pkey.get())) {
return false;
}
@ -211,12 +213,12 @@ static bool InstallCertificate(SSL *ssl) {
}
static int ClientCertCallback(SSL *ssl, X509 **out_x509, EVP_PKEY **out_pkey) {
if (GetConfigPtr(ssl)->async && !GetTestState(ssl)->cert_ready) {
if (GetTestConfig(ssl)->async && !GetTestState(ssl)->cert_ready) {
return -1;
}
ScopedX509 x509;
ScopedEVP_PKEY pkey;
bssl::UniquePtr<X509> x509;
bssl::UniquePtr<EVP_PKEY> pkey;
if (!GetCertificate(ssl, &x509, &pkey)) {
return -1;
}
@ -243,7 +245,7 @@ static int VerifyFail(X509_STORE_CTX *store_ctx, void *arg) {
static int NextProtosAdvertisedCallback(SSL *ssl, const uint8_t **out,
unsigned int *out_len, void *arg) {
const TestConfig *config = GetConfigPtr(ssl);
const TestConfig *config = GetTestConfig(ssl);
if (config->advertise_npn.empty()) {
return SSL_TLSEXT_ERR_NOACK;
}
@ -255,7 +257,7 @@ static int NextProtosAdvertisedCallback(SSL *ssl, const uint8_t **out,
static int NextProtoSelectCallback(SSL* ssl, uint8_t** out, uint8_t* outlen,
const uint8_t* in, unsigned inlen, void* arg) {
const TestConfig *config = GetConfigPtr(ssl);
const TestConfig *config = GetTestConfig(ssl);
if (config->select_next_proto.empty()) {
return SSL_TLSEXT_ERR_NOACK;
}
@ -267,8 +269,15 @@ static int NextProtoSelectCallback(SSL* ssl, uint8_t** out, uint8_t* outlen,
static int AlpnSelectCallback(SSL* ssl, const uint8_t** out, uint8_t* outlen,
const uint8_t* in, unsigned inlen, void* arg) {
const TestConfig *config = GetConfigPtr(ssl);
if (config->select_alpn.empty()) {
if (GetTestState(ssl)->alpn_select_done) {
fprintf(stderr, "AlpnSelectCallback called after completion.\n");
exit(1);
}
GetTestState(ssl)->alpn_select_done = true;
const TestConfig *config = GetTestConfig(ssl);
if (config->decline_alpn) {
return SSL_TLSEXT_ERR_NOACK;
}
@ -289,9 +298,15 @@ static unsigned PskClientCallback(SSL *ssl, const char *hint,
char *out_identity,
unsigned max_identity_len,
uint8_t *out_psk, unsigned max_psk_len) {
const TestConfig *config = GetConfigPtr(ssl);
const TestConfig *config = GetTestConfig(ssl);
if (strcmp(hint ? hint : "", config->psk_identity.c_str()) != 0) {
if (config->psk_identity.empty()) {
if (hint != nullptr) {
fprintf(stderr, "Server PSK hint was non-null.\n");
return 0;
}
} else if (hint == nullptr ||
strcmp(hint, config->psk_identity.c_str()) != 0) {
fprintf(stderr, "Server PSK hint did not match.\n");
return 0;
}
@ -311,7 +326,7 @@ static unsigned PskClientCallback(SSL *ssl, const char *hint,
static unsigned PskServerCallback(SSL *ssl, const char *identity,
uint8_t *out_psk, unsigned max_psk_len) {
const TestConfig *config = GetConfigPtr(ssl);
const TestConfig *config = GetTestConfig(ssl);
if (strcmp(identity, config->psk_identity.c_str()) != 0) {
fprintf(stderr, "Client PSK identity did not match.\n");
@ -328,6 +343,31 @@ static unsigned PskServerCallback(SSL *ssl, const char *identity,
}
static int CertCallback(SSL *ssl, void *arg) {
const TestConfig *config = GetTestConfig(ssl);
// Check the CertificateRequest metadata is as expected.
//
// TODO(davidben): Test |SSL_get_client_CA_list|.
if (!SSL_is_server(ssl) &&
!config->expected_certificate_types.empty()) {
const uint8_t *certificate_types;
size_t certificate_types_len =
SSL_get0_certificate_types(ssl, &certificate_types);
if (certificate_types_len != config->expected_certificate_types.size() ||
memcmp(certificate_types,
config->expected_certificate_types.data(),
certificate_types_len) != 0) {
fprintf(stderr, "certificate types mismatch\n");
return 0;
}
}
// The certificate will be installed via other means.
if (!config->async || config->use_early_callback ||
config->use_old_client_cert_callback) {
return 1;
}
if (!GetTestState(ssl)->cert_ready) {
return -1;
}
@ -339,26 +379,38 @@ static int CertCallback(SSL *ssl, void *arg) {
static void InfoCallback(const SSL *ssl, int type, int val) {
if (type == SSL_CB_HANDSHAKE_DONE) {
if (GetConfigPtr(ssl)->handshake_never_done) {
fprintf(stderr, "handshake completed\n");
if (GetTestConfig(ssl)->handshake_never_done) {
fprintf(stderr, "Handshake unexpectedly completed.\n");
// Abort before any expected error code is printed, to ensure the overall
// test fails.
abort();
}
GetTestState(ssl)->handshake_done = true;
// Callbacks may be called again on a new handshake.
GetTestState(ssl)->ticket_decrypt_done = false;
GetTestState(ssl)->alpn_select_done = false;
}
}
static int NewSessionCallback(SSL *ssl, SSL_SESSION *session) {
GetTestState(ssl)->got_new_session = true;
// BoringSSL passes a reference to |session|.
SSL_SESSION_free(session);
GetTestState(ssl)->new_session.reset(session);
return 1;
}
static int TicketKeyCallback(SSL *ssl, uint8_t *key_name, uint8_t *iv,
EVP_CIPHER_CTX *ctx, HMAC_CTX *hmac_ctx,
int encrypt) {
if (!encrypt) {
if (GetTestState(ssl)->ticket_decrypt_done) {
fprintf(stderr, "TicketKeyCallback called after completion.\n");
return -1;
}
GetTestState(ssl)->ticket_decrypt_done = true;
}
// This is just test code, so use the all-zeros key.
static const uint8_t kZeros[16] = {0};
@ -375,7 +427,7 @@ static int TicketKeyCallback(SSL *ssl, uint8_t *key_name, uint8_t *iv,
}
if (!encrypt) {
return GetConfigPtr(ssl)->renew_ticket ? 2 : 1;
return GetTestConfig(ssl)->renew_ticket ? 2 : 1;
}
return 1;
}
@ -397,10 +449,10 @@ static int CustomExtensionAddCallback(SSL *ssl, unsigned extension_value,
abort();
}
if (GetConfigPtr(ssl)->custom_extension_skip) {
if (GetTestConfig(ssl)->custom_extension_skip) {
return 0;
}
if (GetConfigPtr(ssl)->custom_extension_fail_add) {
if (GetTestConfig(ssl)->custom_extension_fail_add) {
return -1;
}
@ -495,14 +547,22 @@ class SocketCloser {
const int sock_;
};
static ScopedSSL_CTX SetupCtx(const TestConfig *config) {
ScopedSSL_CTX ssl_ctx(SSL_CTX_new(
static bssl::UniquePtr<SSL_CTX> SetupCtx(const TestConfig *config) {
bssl::UniquePtr<SSL_CTX> ssl_ctx(SSL_CTX_new(
config->is_dtls ? DTLS_method() : TLS_method()));
if (!ssl_ctx) {
return nullptr;
}
SSL_CTX_set_security_level(ssl_ctx.get(), 0);
#if 0
/* Disabled for now until we have some TLS1.3 support */
// Enable TLS 1.3 for tests.
if (!config->is_dtls &&
!SSL_CTX_set_max_proto_version(ssl_ctx.get(), TLS1_3_VERSION)) {
return nullptr;
}
#endif
std::string cipher_list = "ALL";
if (!config->cipher.empty()) {
@ -552,7 +612,7 @@ static ScopedSSL_CTX SetupCtx(const TestConfig *config) {
tmpdh = DH_get_2048_256();
}
ScopedDH dh(tmpdh);
bssl::UniquePtr<DH> dh(tmpdh);
if (!dh || !SSL_CTX_set_tmp_dh(ssl_ctx.get(), dh.get())) {
return nullptr;
@ -571,7 +631,7 @@ static ScopedSSL_CTX SetupCtx(const TestConfig *config) {
NULL);
}
if (!config->select_alpn.empty()) {
if (!config->select_alpn.empty() || config->decline_alpn) {
SSL_CTX_set_alpn_select_cb(ssl_ctx.get(), AlpnSelectCallback, NULL);
}
@ -609,6 +669,10 @@ static ScopedSSL_CTX SetupCtx(const TestConfig *config) {
return nullptr;
}
if (config->use_null_client_ca_list) {
SSL_CTX_set_client_CA_list(ssl_ctx.get(), nullptr);
}
return ssl_ctx;
}
@ -621,26 +685,16 @@ static bool RetryAsync(SSL *ssl, int ret) {
return false;
}
const TestConfig *config = GetConfigPtr(ssl);
TestState *test_state = GetTestState(ssl);
if (test_state->clock_delta.tv_usec != 0 ||
test_state->clock_delta.tv_sec != 0) {
// Process the timeout and retry.
test_state->clock.tv_usec += test_state->clock_delta.tv_usec;
test_state->clock.tv_sec += test_state->clock.tv_usec / 1000000;
test_state->clock.tv_usec %= 1000000;
test_state->clock.tv_sec += test_state->clock_delta.tv_sec;
memset(&test_state->clock_delta, 0, sizeof(test_state->clock_delta));
assert(GetTestConfig(ssl)->async);
if (test_state->packeted_bio != nullptr &&
PacketedBioAdvanceClock(test_state->packeted_bio)) {
// The DTLS retransmit logic silently ignores write failures. So the test
// may progress, allow writes through synchronously.
if (config->async) {
AsyncBioEnforceWriteQuota(test_state->async_bio, false);
}
AsyncBioEnforceWriteQuota(test_state->async_bio, false);
int timeout_ret = DTLSv1_handle_timeout(ssl);
if (config->async) {
AsyncBioEnforceWriteQuota(test_state->async_bio, true);
}
AsyncBioEnforceWriteQuota(test_state->async_bio, true);
if (timeout_ret < 0) {
fprintf(stderr, "Error retransmitting.\n");
@ -669,7 +723,7 @@ static bool RetryAsync(SSL *ssl, int ret) {
// DoRead reads from |ssl|, resolving any asynchronous operations. It returns
// the result value of the final |SSL_read| call.
static int DoRead(SSL *ssl, uint8_t *out, size_t max_out) {
const TestConfig *config = GetConfigPtr(ssl);
const TestConfig *config = GetTestConfig(ssl);
TestState *test_state = GetTestState(ssl);
int ret;
do {
@ -679,18 +733,40 @@ static int DoRead(SSL *ssl, uint8_t *out, size_t max_out) {
// trigger a retransmit, so disconnect the write quota.
AsyncBioEnforceWriteQuota(test_state->async_bio, false);
}
ret = SSL_read(ssl, out, max_out);
ret = config->peek_then_read ? SSL_peek(ssl, out, max_out)
: SSL_read(ssl, out, max_out);
if (config->async) {
AsyncBioEnforceWriteQuota(test_state->async_bio, true);
}
} while (config->async && RetryAsync(ssl, ret));
if (config->peek_then_read && ret > 0) {
std::unique_ptr<uint8_t[]> buf(new uint8_t[static_cast<size_t>(ret)]);
// SSL_peek should synchronously return the same data.
int ret2 = SSL_peek(ssl, buf.get(), ret);
if (ret2 != ret ||
memcmp(buf.get(), out, ret) != 0) {
fprintf(stderr, "First and second SSL_peek did not match.\n");
return -1;
}
// SSL_read should synchronously return the same data and consume it.
ret2 = SSL_read(ssl, buf.get(), ret);
if (ret2 != ret ||
memcmp(buf.get(), out, ret) != 0) {
fprintf(stderr, "SSL_peek and SSL_read did not match.\n");
return -1;
}
}
return ret;
}
// WriteAll writes |in_len| bytes from |in| to |ssl|, resolving any asynchronous
// operations. It returns the result of the final |SSL_write| call.
static int WriteAll(SSL *ssl, const uint8_t *in, size_t in_len) {
const TestConfig *config = GetConfigPtr(ssl);
const TestConfig *config = GetTestConfig(ssl);
int ret;
do {
ret = SSL_write(ssl, in, in_len);
@ -705,7 +781,7 @@ static int WriteAll(SSL *ssl, const uint8_t *in, size_t in_len) {
// DoShutdown calls |SSL_shutdown|, resolving any asynchronous operations. It
// returns the result of the final |SSL_shutdown| call.
static int DoShutdown(SSL *ssl) {
const TestConfig *config = GetConfigPtr(ssl);
const TestConfig *config = GetTestConfig(ssl);
int ret;
do {
ret = SSL_shutdown(ssl);
@ -713,11 +789,19 @@ static int DoShutdown(SSL *ssl) {
return ret;
}
static uint16_t GetProtocolVersion(const SSL *ssl) {
uint16_t version = SSL_version(ssl);
if (!SSL_is_dtls(ssl)) {
return version;
}
return 0x0201 + ~version;
}
// CheckHandshakeProperties checks, immediately after |ssl| completes its
// initial handshake (or False Starts), whether all the properties are
// consistent with the test configuration and invariants.
static bool CheckHandshakeProperties(SSL *ssl, bool is_resume) {
const TestConfig *config = GetConfigPtr(ssl);
const TestConfig *config = GetTestConfig(ssl);
if (SSL_get_current_cipher(ssl) == nullptr) {
fprintf(stderr, "null cipher after handshake\n");
@ -741,7 +825,9 @@ static bool CheckHandshakeProperties(SSL *ssl, bool is_resume) {
if (expect_handshake_done && !config->is_server) {
bool expect_new_session =
!config->expect_no_session &&
(!SSL_session_reused(ssl) || config->expect_ticket_renewal);
(!SSL_session_reused(ssl) || config->expect_ticket_renewal) &&
// Session tickets are sent post-handshake in TLS 1.3.
GetProtocolVersion(ssl) < TLS1_3_VERSION;
if (expect_new_session != GetTestState(ssl)->got_new_session) {
fprintf(stderr,
"new session was%s cached, but we expected the opposite\n",
@ -760,19 +846,6 @@ static bool CheckHandshakeProperties(SSL *ssl, bool is_resume) {
}
}
if (!config->expected_certificate_types.empty()) {
const uint8_t *certificate_types;
size_t certificate_types_len =
SSL_get0_certificate_types(ssl, &certificate_types);
if (certificate_types_len != config->expected_certificate_types.size() ||
memcmp(certificate_types,
config->expected_certificate_types.data(),
certificate_types_len) != 0) {
fprintf(stderr, "certificate types mismatch\n");
return false;
}
}
if (!config->expected_next_proto.empty()) {
const uint8_t *next_proto;
unsigned next_proto_len;
@ -797,6 +870,13 @@ static bool CheckHandshakeProperties(SSL *ssl, bool is_resume) {
}
}
if (config->expect_extended_master_secret) {
if (!SSL_get_extms_support(ssl)) {
fprintf(stderr, "No EMS for connection when expected");
return false;
}
}
if (config->expect_verify_result) {
int expected_verify_result = config->verify_fail ?
X509_V_ERR_APPLICATION_VERIFICATION :
@ -808,19 +888,18 @@ static bool CheckHandshakeProperties(SSL *ssl, bool is_resume) {
}
}
if (!config->is_server) {
/* Clients should expect a peer certificate chain iff this was not a PSK
* cipher suite. */
if (config->psk.empty()) {
if (SSL_get_peer_cert_chain(ssl) == nullptr) {
fprintf(stderr, "Missing peer certificate chain!\n");
return false;
}
} else if (SSL_get_peer_cert_chain(ssl) != nullptr) {
fprintf(stderr, "Unexpected peer certificate chain!\n");
if (!config->psk.empty()) {
if (SSL_get_peer_cert_chain(ssl) != nullptr) {
fprintf(stderr, "Received peer certificate on a PSK cipher.\n");
return false;
}
} else if (!config->is_server || config->require_any_client_certificate) {
if (SSL_get_peer_cert_chain(ssl) == nullptr) {
fprintf(stderr, "Received no peer certificate but expected one.\n");
return false;
}
}
return true;
}
@ -828,15 +907,15 @@ static bool CheckHandshakeProperties(SSL *ssl, bool is_resume) {
// true and sets |*out_session| to the negotiated SSL session. If the test is a
// resumption attempt, |is_resume| is true and |session| is the session from the
// previous exchange.
static bool DoExchange(ScopedSSL_SESSION *out_session, SSL_CTX *ssl_ctx,
const TestConfig *config, bool is_resume,
SSL_SESSION *session) {
ScopedSSL ssl(SSL_new(ssl_ctx));
static bool DoExchange(bssl::UniquePtr<SSL_SESSION> *out_session,
SSL_CTX *ssl_ctx, const TestConfig *config,
bool is_resume, SSL_SESSION *session) {
bssl::UniquePtr<SSL> ssl(SSL_new(ssl_ctx));
if (!ssl) {
return false;
}
if (!SetConfigPtr(ssl.get(), config) ||
if (!SetTestConfig(ssl.get(), config) ||
!SetTestState(ssl.get(), std::unique_ptr<TestState>(new TestState))) {
return false;
}
@ -845,16 +924,14 @@ static bool DoExchange(ScopedSSL_SESSION *out_session, SSL_CTX *ssl_ctx,
!SSL_set_mode(ssl.get(), SSL_MODE_SEND_FALLBACK_SCSV)) {
return false;
}
if (!config->use_early_callback && !config->use_old_client_cert_callback) {
if (config->async) {
SSL_set_cert_cb(ssl.get(), CertCallback, NULL);
} else if (!InstallCertificate(ssl.get())) {
return false;
}
} else {
fprintf(stderr, "Early callback not supported.\n");
// Install the certificate synchronously if nothing else will handle it.
if (!config->use_early_callback &&
!config->use_old_client_cert_callback &&
!config->async &&
!InstallCertificate(ssl.get())) {
return false;
}
SSL_set_cert_cb(ssl.get(), CertCallback, nullptr);
if (config->require_any_client_certificate) {
SSL_set_verify(ssl.get(), SSL_VERIFY_PEER|SSL_VERIFY_FAIL_IF_NO_PEER_CERT,
NULL);
@ -869,6 +946,9 @@ static bool DoExchange(ScopedSSL_SESSION *out_session, SSL_CTX *ssl_ctx,
if (config->partial_write) {
SSL_set_mode(ssl.get(), SSL_MODE_ENABLE_PARTIAL_WRITE);
}
if (config->no_tls13) {
SSL_set_options(ssl.get(), SSL_OP_NO_TLSv1_3);
}
if (config->no_tls12) {
SSL_set_options(ssl.get(), SSL_OP_NO_TLSv1_2);
}
@ -919,11 +999,13 @@ static bool DoExchange(ScopedSSL_SESSION *out_session, SSL_CTX *ssl_ctx,
fprintf(stderr, "SCTs not supported (with the same API).\n");
return false;
}
if (config->min_version != 0) {
SSL_set_min_proto_version(ssl.get(), (uint16_t)config->min_version);
if (config->min_version != 0 &&
!SSL_set_min_proto_version(ssl.get(), (uint16_t)config->min_version)) {
return false;
}
if (config->max_version != 0) {
SSL_set_max_proto_version(ssl.get(), (uint16_t)config->max_version);
if (config->max_version != 0 &&
!SSL_set_max_proto_version(ssl.get(), (uint16_t)config->max_version)) {
return false;
}
if (config->mtu != 0) {
SSL_set_options(ssl.get(), SSL_OP_NO_QUERY_MTU);
@ -959,13 +1041,20 @@ static bool DoExchange(ScopedSSL_SESSION *out_session, SSL_CTX *ssl_ctx,
}
if (config->enable_all_curves) {
static const int kAllCurves[] = {
NID_X9_62_prime256v1, NID_secp384r1, NID_secp521r1, NID_X25519,
NID_X9_62_prime256v1, NID_secp384r1, NID_secp521r1, NID_X25519,
};
if (!SSL_set1_curves(ssl.get(), kAllCurves,
sizeof(kAllCurves) / sizeof(kAllCurves[0]))) {
OPENSSL_ARRAY_SIZE(kAllCurves))) {
return false;
}
}
if (config->initial_timeout_duration_ms > 0) {
fprintf(stderr, "Setting DTLS initial timeout duration not supported.\n");
return false;
}
if (config->max_cert_list > 0) {
SSL_set_max_cert_list(ssl.get(), config->max_cert_list);
}
int sock = Connect(config->port);
if (sock == -1) {
@ -973,19 +1062,25 @@ static bool DoExchange(ScopedSSL_SESSION *out_session, SSL_CTX *ssl_ctx,
}
SocketCloser closer(sock);
ScopedBIO bio(BIO_new_socket(sock, BIO_NOCLOSE));
bssl::UniquePtr<BIO> bio(BIO_new_socket(sock, BIO_NOCLOSE));
if (!bio) {
return false;
}
if (config->is_dtls) {
ScopedBIO packeted =
PacketedBioCreate(&GetTestState(ssl.get())->clock_delta);
bssl::UniquePtr<BIO> packeted = PacketedBioCreate(!config->async);
if (!packeted) {
return false;
}
GetTestState(ssl.get())->packeted_bio = packeted.get();
BIO_push(packeted.get(), bio.release());
bio = std::move(packeted);
}
if (config->async) {
ScopedBIO async_scoped =
bssl::UniquePtr<BIO> async_scoped =
config->is_dtls ? AsyncBioCreateDatagram() : AsyncBioCreate();
if (!async_scoped) {
return false;
}
BIO_push(async_scoped.get(), bio.release());
GetTestState(ssl.get())->async_bio = async_scoped.get();
bio = std::move(async_scoped);
@ -1056,6 +1151,11 @@ static bool DoExchange(ScopedSSL_SESSION *out_session, SSL_CTX *ssl_ctx,
return false;
}
if (config->send_alert) {
fprintf(stderr, "Sending an alert not supported\n");
return false;
}
if (config->write_different_record_sizes) {
if (config->is_dtls) {
fprintf(stderr, "write_different_record_sizes not supported for DTLS\n");
@ -1068,8 +1168,7 @@ static bool DoExchange(ScopedSSL_SESSION *out_session, SSL_CTX *ssl_ctx,
memset(buf.get(), 0x42, kBufLen);
static const size_t kRecordSizes[] = {
0, 1, 255, 256, 257, 16383, 16384, 16385, 32767, 32768, 32769};
for (size_t i = 0; i < sizeof(kRecordSizes) / sizeof(kRecordSizes[0]);
i++) {
for (size_t i = 0; i < OPENSSL_ARRAY_SIZE(kRecordSizes); i++) {
const size_t len = kRecordSizes[i];
if (len > kBufLen) {
fprintf(stderr, "Bad kRecordSizes value.\n");
@ -1135,13 +1234,26 @@ static bool DoExchange(ScopedSSL_SESSION *out_session, SSL_CTX *ssl_ctx,
if (!config->is_server && !config->false_start &&
!config->implicit_handshake &&
// Session tickets are sent post-handshake in TLS 1.3.
GetProtocolVersion(ssl.get()) < TLS1_3_VERSION &&
GetTestState(ssl.get())->got_new_session) {
fprintf(stderr, "new session was established after the handshake\n");
return false;
}
if (GetProtocolVersion(ssl.get()) >= TLS1_3_VERSION && !config->is_server) {
bool expect_new_session =
!config->expect_no_session && !config->shim_shuts_down;
if (expect_new_session != GetTestState(ssl.get())->got_new_session) {
fprintf(stderr,
"new session was%s cached, but we expected the opposite\n",
GetTestState(ssl.get())->got_new_session ? "" : " not");
return false;
}
}
if (out_session) {
out_session->reset(SSL_get1_session(ssl.get()));
*out_session = std::move(GetTestState(ssl.get())->new_session);
}
ret = DoShutdown(ssl.get());
@ -1178,7 +1290,7 @@ class StderrDelimiter {
~StderrDelimiter() { fprintf(stderr, "--- DONE ---\n"); }
};
int main(int argc, char **argv) {
static int Main(int argc, char **argv) {
// To distinguish ASan's output from ours, add a trailing message to stderr.
// Anything following this line will be considered an error.
StderrDelimiter delimiter;
@ -1213,25 +1325,34 @@ int main(int argc, char **argv) {
return Usage(argv[0]);
}
ScopedSSL_CTX ssl_ctx = SetupCtx(&config);
bssl::UniquePtr<SSL_CTX> ssl_ctx = SetupCtx(&config);
if (!ssl_ctx) {
ERR_print_errors_fp(stderr);
return 1;
}
ScopedSSL_SESSION session;
if (!DoExchange(&session, ssl_ctx.get(), &config, false /* is_resume */,
NULL /* session */)) {
ERR_print_errors_fp(stderr);
return 1;
}
bssl::UniquePtr<SSL_SESSION> session;
for (int i = 0; i < config.resume_count + 1; i++) {
bool is_resume = i > 0;
if (is_resume && !config.is_server && !session) {
fprintf(stderr, "No session to offer.\n");
return 1;
}
if (config.resume &&
!DoExchange(NULL, ssl_ctx.get(), &config, true /* is_resume */,
session.get())) {
ERR_print_errors_fp(stderr);
return 1;
bssl::UniquePtr<SSL_SESSION> offer_session = std::move(session);
if (!DoExchange(&session, ssl_ctx.get(), &config, is_resume,
offer_session.get())) {
fprintf(stderr, "Connection %d failed.\n", i + 1);
ERR_print_errors_fp(stderr);
return 1;
}
}
return 0;
}
} // namespace bssl
int main(int argc, char **argv) {
return bssl::Main(argc, argv);
}

@ -26,6 +26,50 @@ namespace {
const uint8_t kOpcodePacket = 'P';
const uint8_t kOpcodeTimeout = 'T';
const uint8_t kOpcodeTimeoutAck = 't';
struct PacketedBio {
explicit PacketedBio(bool advance_clock_arg)
: advance_clock(advance_clock_arg) {
memset(&timeout, 0, sizeof(timeout));
memset(&clock, 0, sizeof(clock));
memset(&read_deadline, 0, sizeof(read_deadline));
}
bool HasTimeout() const {
return timeout.tv_sec != 0 || timeout.tv_usec != 0;
}
bool CanRead() const {
if (read_deadline.tv_sec == 0 && read_deadline.tv_usec == 0) {
return true;
}
if (clock.tv_sec == read_deadline.tv_sec) {
return clock.tv_usec < read_deadline.tv_usec;
}
return clock.tv_sec < read_deadline.tv_sec;
}
timeval timeout;
timeval clock;
timeval read_deadline;
bool advance_clock;
};
PacketedBio *GetData(BIO *bio) {
#if 0
/* Missing accessor BIO_get_method()?? Disabled for now */
if (bio->method != &g_packeted_bio_method) {
return NULL;
}
#endif
return (PacketedBio *)BIO_get_data(bio);
}
const PacketedBio *GetData(const BIO *bio) {
return GetData(const_cast<BIO*>(bio));
}
// ReadAll reads |len| bytes from |bio| into |out|. It returns 1 on success and
// 0 or -1 on error.
@ -76,59 +120,113 @@ static int PacketedWrite(BIO *bio, const char *in, int inl) {
}
static int PacketedRead(BIO *bio, char *out, int outl) {
PacketedBio *data = GetData(bio);
if (BIO_next(bio) == NULL) {
return 0;
}
BIO_clear_retry_flags(bio);
// Read the opcode.
uint8_t opcode;
int ret = ReadAll(BIO_next(bio), &opcode, sizeof(opcode));
if (ret <= 0) {
BIO_copy_next_retry(bio);
return ret;
}
for (;;) {
// Check if the read deadline has passed.
if (!data->CanRead()) {
BIO_set_retry_read(bio);
return -1;
}
if (opcode == kOpcodeTimeout) {
fprintf(stderr, "Timeout simulation not supported.\n");
return -1;
}
// Read the opcode.
uint8_t opcode;
int ret = ReadAll(BIO_next(bio), &opcode, sizeof(opcode));
if (ret <= 0) {
BIO_copy_next_retry(bio);
return ret;
}
if (opcode != kOpcodePacket) {
fprintf(stderr, "Unknown opcode, %u\n", opcode);
return -1;
}
if (opcode == kOpcodeTimeout) {
// The caller is required to advance any pending timeouts before
// continuing.
if (data->HasTimeout()) {
fprintf(stderr, "Unprocessed timeout!\n");
return -1;
}
// Read the length prefix.
uint8_t len_bytes[4];
ret = ReadAll(BIO_next(bio), len_bytes, sizeof(len_bytes));
if (ret <= 0) {
BIO_copy_next_retry(bio);
return ret;
}
// Process the timeout.
uint8_t buf[8];
ret = ReadAll(BIO_next(bio), buf, sizeof(buf));
if (ret <= 0) {
BIO_copy_next_retry(bio);
return ret;
}
uint64_t timeout = (static_cast<uint64_t>(buf[0]) << 56) |
(static_cast<uint64_t>(buf[1]) << 48) |
(static_cast<uint64_t>(buf[2]) << 40) |
(static_cast<uint64_t>(buf[3]) << 32) |
(static_cast<uint64_t>(buf[4]) << 24) |
(static_cast<uint64_t>(buf[5]) << 16) |
(static_cast<uint64_t>(buf[6]) << 8) |
static_cast<uint64_t>(buf[7]);
timeout /= 1000; // Convert nanoseconds to microseconds.
uint32_t len = (len_bytes[0] << 24) | (len_bytes[1] << 16) |
(len_bytes[2] << 8) | len_bytes[3];
uint8_t *buf = (uint8_t *)OPENSSL_malloc(len);
if (buf == NULL) {
return -1;
}
ret = ReadAll(BIO_next(bio), buf, len);
if (ret <= 0) {
fprintf(stderr, "Packeted BIO was truncated\n");
return -1;
}
data->timeout.tv_usec = timeout % 1000000;
data->timeout.tv_sec = timeout / 1000000;
// Send an ACK to the peer.
ret = BIO_write(BIO_next(bio), &kOpcodeTimeoutAck, 1);
if (ret <= 0) {
return ret;
}
assert(ret == 1);
if (!data->advance_clock) {
// Signal to the caller to retry the read, after advancing the clock.
BIO_set_retry_read(bio);
return -1;
}
PacketedBioAdvanceClock(bio);
continue;
}
if (outl > (int)len) {
outl = len;
if (opcode != kOpcodePacket) {
fprintf(stderr, "Unknown opcode, %u\n", opcode);
return -1;
}
// Read the length prefix.
uint8_t len_bytes[4];
ret = ReadAll(BIO_next(bio), len_bytes, sizeof(len_bytes));
if (ret <= 0) {
BIO_copy_next_retry(bio);
return ret;
}
uint32_t len = (len_bytes[0] << 24) | (len_bytes[1] << 16) |
(len_bytes[2] << 8) | len_bytes[3];
uint8_t *buf = (uint8_t *)OPENSSL_malloc(len);
if (buf == NULL) {
return -1;
}
ret = ReadAll(BIO_next(bio), buf, len);
if (ret <= 0) {
fprintf(stderr, "Packeted BIO was truncated\n");
return -1;
}
if (outl > (int)len) {
outl = len;
}
memcpy(out, buf, outl);
OPENSSL_free(buf);
return outl;
}
memcpy(out, buf, outl);
OPENSSL_free(buf);
return outl;
}
static long PacketedCtrl(BIO *bio, int cmd, long num, void *ptr) {
if (cmd == BIO_CTRL_DGRAM_SET_NEXT_TIMEOUT) {
memcpy(&GetData(bio)->read_deadline, ptr, sizeof(timeval));
return 1;
}
if (BIO_next(bio) == NULL) {
return 0;
}
@ -148,6 +246,7 @@ static int PacketedFree(BIO *bio) {
return 0;
}
delete GetData(bio);
BIO_set_init(bio, 0);
return 1;
}
@ -179,11 +278,33 @@ static const BIO_METHOD *PacketedMethod(void)
}
} // namespace
ScopedBIO PacketedBioCreate(timeval *out_timeout) {
ScopedBIO bio(BIO_new(PacketedMethod()));
bssl::UniquePtr<BIO> PacketedBioCreate(bool advance_clock) {
bssl::UniquePtr<BIO> bio(BIO_new(PacketedMethod()));